667.

Problem 46.35 (RHK)

Light of wavelength 440 nm passes through a double slit, yielding the diffraction pattern of intensity I versus deflection angle θ, as shown in the figure. We have to calculate (a) the slit width and (b) the slit separation. We have to verify the displayed intensities of the $m=1$ and $m=2$ interference fringes.

Solution:

(a)

As the boundary of the central envelope is at $\theta_{c}= \pm 5^{0}$, we note that
$\frac{\pi a \sin \left|\theta_{c}\right|}{\lambda}=\pi$,
or

$$
a=\frac{\lambda}{\sin \left|\theta_{c}\right|}
$$

The wavelength of light used in obtaining the diffraction pattern is $\lambda=440 \mathrm{~nm}$.

Therefore, the width a of the slit will be
$a=\frac{440 \times 10^{-9}}{\sin 5^{0}} \mathrm{~m}=5.0 \times 10^{-6} \mathrm{~m}=5.0 \mu \mathrm{~m}$.
(b)

From the intensity diagram, we note that the peak of the fourth fringe falls on the diffraction minimum of the central envelope and that are only 3 interference fringes other than the central fringe on each side of the central fringe.

Let the two slits be separated by distance d. The $4^{\text {th }}$ fringe is determined by the equation

$$
\frac{d \sin \theta_{c}}{\lambda}=4
$$

or

$$
d=\frac{4 \lambda}{\sin \theta_{c}}=4 \times 5 \mu \mathrm{~m}=20 \mu \mathrm{~m}
$$

We will next calculate the intensity of the fringe that corresponds to $m=1$.

We have the condition that
$\frac{d \sin \theta}{\lambda}=1$,
or
$\frac{\sin \theta}{\lambda}=\frac{1}{d}=\frac{1}{20 \mu \mathrm{~m}}$.
For calculating the intensity we have to find the value of
$\alpha=\frac{\pi a \sin \theta}{\lambda}=\frac{5 \times \pi}{20}=\frac{\pi}{4}$.
As the intensity at a fringe is given by
$I_{\theta}=I_{0} \times\left(\frac{\sin \alpha}{\alpha}\right)^{2}$,
we find the intensity of the fringe that corresponds to $m=1$ will be
$I_{1}=I_{0}\left(\frac{\sin (\pi / 4)}{\pi / 4}\right)^{2}=5.67 \mathrm{~mW} \mathrm{~cm}^{-2}$,
where we have used that $I_{0}=7.0 \mathrm{~mW} \mathrm{~cm}^{-2}$.

The intensity of the fringe, which corresponds to $m=2$, can be similarly calculated.

For $m=2$,
$\frac{d \sin \theta}{\lambda}=2$,
or
$\frac{\sin \theta}{\lambda}=\frac{2}{d}$.
Value of α for $m=2$ will be
$\alpha=\frac{\pi a \sin \theta}{\lambda}=\frac{\pi \times 5 \times 2}{20}=\frac{\pi}{2}$.
Therefore,
$I_{2}=I_{0}\left(\frac{\sin (\pi / 2)}{\pi / 2}\right)^{2}=\frac{7 \times 4}{\pi^{2}} \mathrm{~mW} \mathrm{~cm}{ }^{-2}=2.8 \mathrm{~mW} \mathrm{~cm}^{-2}$.

