666.

Problem 46.33 (RHK)

We consider a double-slit each of width a and let their separation $d=2 a$. (a) We have to find the interference fringes that lie in the central diffraction envelope. (b) If we put $d=a$, the two slits coalesce into a single slit of width $2 a$. We have to show that the formula for the intensity of a double-slit with slits of finite size reduces to the diffraction pattern for such a slit.

Solution:

(a)

The intensity pattern of a double-slit of slit separation d and size of each slit a is given by the equation
$I_{\theta}=I_{m} \cos ^{2} \beta \times\left(\frac{\sin \alpha}{\alpha}\right)^{2}$,
where
$\beta=\frac{\pi d \sin \theta}{\lambda}$,
and
$\alpha=\frac{\pi a \sin \theta}{\lambda}$.
We note that the central diffraction envelope is
determined by the condition that
$\alpha= \pm \pi$.
Therefore, the angular size of the principal diffraction envelope is
$\theta_{c}= \pm \sin ^{-1} \frac{\lambda}{a}$.
Interference fringes are determined by the Young's double-slit interference condition

$$
\frac{d \sin \theta}{\lambda}=m, m=0, \pm 1, \pm 2, \ldots
$$

We are given that $d=2 a$.
Therefore, for $m= \pm 1$,
we note that
$\theta= \pm \sin ^{-1}\left(\frac{\lambda}{2 a}\right)$.

And, $\theta<\theta_{c}$, therefore two fringes corresponding to $m= \pm 1$ are contained inside the central envelope.
We note that for $m= \pm 2, \theta=\theta_{c}$, and at this point we have the diffraction minima of the central envelope. Therefore, the total number of fringes contained inside the central envelope is three.
(b)

If $d=a$, we have
$\beta=\alpha=\frac{\pi a \sin \theta}{\lambda}$.
And,
$I_{\theta}=I_{m}\left(\frac{\sin (2 \alpha)}{2 \alpha}\right)^{2}$,
which is the intensity of diffraction of a single slit of width $2 a$.

