665.

Problem 46.31 (RHK)

Two slits of width a and separation d are illuminated by a coherent beam of light of wavelength λ. We have to find the linear separation of the interference fringes observed on a screen that is a distance D away.

Solution:

Let us consider a Young's double-slit of slit separation d. The condition for interference maxima of a Young's double-slit is
$d \sin \theta=m \lambda, m=0, \pm 1, \pm 2$
Assuming that the distance of the screen from the slits
D ? d, we approximate
$\sin \theta ; \tan \theta ; \frac{y}{D}$,
where y is the distance of a fringe from the central fringe.

We thus note the linear difference between successive fringes will be given as
$\frac{y_{m+1}-y_{m}}{D}=\frac{\lambda}{d}$,
and
$\Delta y=\frac{\lambda D}{d}$.
In the above analysis we have considered fringes that are contained within a diffraction lobe.

