662.

Problem 46.25 (RHK)

A circular diaphragm 60 cm in diameter oscillates at a frequency of 25 kHz in an underwater source of sound used for submarine detection. Far from the source the sound intensity is distributed as a diffraction pattern for a circular hole whose diameter equals that of the diaphragm. Assuming that the speed of sound in water to be $1450 \mathrm{~m} \mathrm{~s}^{-1}$, we have to find the angle between the normal to the diaphragm and the direction of the first minimum. (b) We have to repeat the calculation for a source having an (audible) frequency of 1.0 kHz .

Solution:

(a)

The speed of sound in water is $v=1450 \mathrm{~m} \mathrm{~s}^{-1}$.
The wavelength of sound waves of frequency 25 kHz will be

$$
\lambda=\frac{1450}{25 \times 10^{3}} \mathrm{~m}=5.8 \times 10^{-2} \mathrm{~m}
$$

In a diffraction from a circular hole of diameter a the position of first minima is determined by the relation
$\theta=\frac{1.22 \times \lambda}{a}$.
It is given that the diameter of the circular diaphragm is $a=60 \mathrm{~cm}=0.6 \mathrm{~m}$.

Therefore, angle θ will be
$\theta=\frac{1.22 \times 5.8 \times 10^{-2}}{0.6} \mathrm{rad}=0.1179 \mathrm{rad}=6.75^{\circ}$.
(b)

Let us repeat the calculation for oscillation of diaphragm with 1.0 kHz frequency. The wavelength of the sound waves will be
$\lambda=\frac{1450}{1.0 \times 10^{3}} \mathrm{~m}=1.45 \mathrm{~m}$.
As $\lambda>a$, we may not be able to see the first diffraction minimum. Note
$\frac{1.22 \times \lambda}{a}=\frac{1.22 \times 1.45}{0.6}=2.94$,
and cannot be satisfied for any θ.

