660.

Problem 46.19 (RHK)

We have to find the separation of two points on the Moon's surface that can just be resolved by the 200-in. (=5.08-m) telescope at Mount Palomar, assuming that this distance is determined by diffraction effects. We may assume a wavelength of 565 nm .

Solution:

The mean orbital radius of the Moon from the Earth is

$$
R_{\text {earth-moon }}=3.82 \times 10^{8} \mathrm{~m} .
$$

We will use Rayleigh's eriterion that two objects must have an angular separation at least θ_{R} to be resolvable by a lens of aperture d using light of wavelength λ. $\theta_{R}=\sin ^{-1}\left(\frac{1.22 \lambda}{d}\right)$.

Data of the problem are $d=5.08 \mathrm{~m}$, and $\lambda=565 \mathrm{~nm}$.

Therefore,

$$
\begin{aligned}
\theta_{R}=\sin ^{-1}\left(\frac{1.22 \lambda}{d}\right) & =\sin ^{-1}\left(\frac{1.22 \times 565 \times 10^{-9}}{5.08}\right) \\
& =135.7 \times 10^{-9} \mathrm{rad} .
\end{aligned}
$$

The separation of two points on the Moon that can be resolved by the Mount Palomar telescope will therefore be

$$
\begin{aligned}
D=\theta_{R} \times R_{\text {earth-moon }} & =135.7 \times 10^{-9} \times 3.82 \times 10^{8} \mathrm{~m} \\
& =51.8 \mathrm{~m} .
\end{aligned}
$$

