659.

Problem 46.17 (RHK)

The two headlights of an approaching automobile are 1.42 m apart. We have to find (a) angular separation and (b) the maximum distance at which the eye can resolve them. We may assume a pupil diameter of 5.00 mm and a wavelength of 562 nm . Also, we will assume that diffraction effects alone limit the resolution.

Solution:

(a)

We will use Rayleigh's criterion that two objects must have an angular separation at least θ_{R} to be resolvable by a lens of aperture d using light of wavelength λ. $\theta_{R}=\sin ^{-1}\left(\frac{1.22 \lambda}{d}\right)$.

Data of the problem are
$d=5.00 \mathrm{~mm}$,
$\lambda=562 \mathrm{~nm}$.
Therefore,

$$
\begin{aligned}
\theta_{R}=\sin ^{-1}\left(\frac{1.22 \times 562 \times 10^{-9}}{5.0 \times 10^{-3}}\right) & =0.137 \times 10^{-3} \mathrm{rad} \\
& =137 \mu \mathrm{rad} .
\end{aligned}
$$

(b)

The maximum distance at which the headlights separated by a distance of 1.42 m will be barely resolvable will therefore be
$\frac{1.42 \mathrm{~m}}{l}=137 \times 10^{-6} \mathrm{rad}$,
or
$l=\frac{1.42 \mathrm{~m}}{137 \times 10^{-6}}=10.36 \mathrm{~km} ; 10.4 \mathrm{~km}$.

