658.

Problem 46.15 (RHK)

(a)We have to show that the values of α at which intensity maxima for single-slit diffraction occur can be found exactly by differentiating

$$
I_{\theta}=I_{m}\left(\frac{\sin \alpha}{\alpha}\right)^{2}
$$

with respect to α and by equating it to zero. This gives the condition

$$
\tan \alpha=\alpha
$$

(b) The values of α satisfying this equation can be found by plotting graphically the curve $y=\tan \alpha$ and the straight line $y=\alpha$ and finding their intersection. (c) We have to find the (nonintegral) values of m corresponding to successive maxima in the single-slit pattern. We may note that the secondary maxima do not lie exactly halfway between minima.

Solution:

(a)

As
$\frac{I_{\theta}}{I_{m}}=\left(\frac{\sin \alpha}{\alpha}\right)^{2}$,
the condition for maxima of the function $\left(I_{\theta} / I_{m}\right)$ is
$\frac{d}{d \alpha}\left(I_{\theta} / I_{m}\right)=0$.
We have
$2\left(\frac{\sin \alpha}{\alpha}\right)\left(\frac{\cos \alpha}{\alpha}-\frac{\sin \alpha}{\alpha^{2}}\right)=0$,
or
$\left(\frac{\cos \alpha}{\alpha}-\frac{\sin \alpha}{\alpha^{2}}\right)=0$,
or
$\tan \alpha=\alpha$.
(b)

Solutions of the equation
$\tan \alpha=\alpha$
are: $\alpha=0 ; 4.493 \mathrm{rad} ; 7.725 \mathrm{rad} ; \ldots$
If we expect maxima to occur at midpoints of successive minima, then the locations of secondary maxima will be determined by the relation
$\alpha=\left(m+\frac{1}{2}\right) \pi, m=1,2,3 \ldots$,
we are leaving out the central maxima, which corresponds to $\alpha=0$.

The deviations from the midpoint approximation can be seen from first two values of α, which correspond to $m=1$, and $m=2$.
$m=1$, and $\alpha=4.493$,
$m-\left(\frac{\alpha}{\pi}-\frac{1}{2}\right)=1-0.93$;
$m=2$, and $\alpha=7.725$,
$m-\left(\frac{\alpha}{\pi}-\frac{1}{2}\right)=2-1.96$.
From the above calculations, we note that the secondary maxima lie do not lie at the midpoints of successive minima, but only closely to the midpoints.

