657.

Problem 46.13 (RHK)

We have to calculate the width of the central maximum in a single-slit diffraction pattern in which $a=10 \lambda$.

Solution:

The width of central maximum of diffraction pattern is defined to be the angular width where
$\frac{I_{\theta}}{I_{0}}=\frac{1}{2}$.
Also,
$\frac{I_{\theta}}{I_{0}}=\left(\frac{\sin \alpha}{\alpha}\right)^{2}$,
where
$\alpha=\frac{\pi a \sin \theta}{\lambda}$.
The half-angle θ which determines the width of the central maximum can therefore be determined by using the condition that
$\sqrt{2} \sin \alpha=\alpha$.

This equation can be solved graphically or by the method of iteration. Its solution is
$\alpha_{\frac{1}{2}}=1.39156$.
It is given that
$\frac{a}{\lambda}=10$.
Therefore,
$\sin \theta_{\frac{1}{2}}=\frac{\alpha \lambda}{\pi a}=\frac{1.39156}{\pi \times 10}$,
and
$\theta_{\frac{1}{2}}=\sin ^{-1}\left(\frac{1.39156}{\pi \times 10}\right)=4.43 \times 10^{-2} \mathrm{rad}$

$$
=2.53^{\circ} .
$$

Therefore, the angular width of the diffraction central maximum for the data given in the problem will be $2 \theta=5.07^{\circ}$.

