656.

Problem 46.11 (RHK)

Monochromatic light with wavelength 538 nm falls on a slit of width $25.2 \mu \mathrm{~m}$. The distance from the slit to a screen is 3.48 m . We consider a point on the screen 1.13 cm from the central maximum. (a) We have to calculate θ; (b) α; (c) and the ratio of the intensity at this point to the intensity at the central maximum.

Solution:

(a)

The distance D of the screen from the slit is 3.48 m . That is
$D=3.48 \mathrm{~m}$.
The angle θ subtended by the point P at a distance 1.13 cm from the central maximum on the screen with the line joining the midpoint of the slit with the screen normally will be approximately given by

$$
\begin{aligned}
\theta=\frac{1.13 \times 10^{-2}}{3.48} \mathrm{rad} & =3.25 \times 10^{-3} \mathrm{rad} \\
& =0.186^{0} .
\end{aligned}
$$

(b)

If the slit width is denoted by a and the wavelength of the light used for producing the diffraction pattern is denoted by λ, the variable α, which determines the intensity of diffraction, is defined as
$\alpha=\frac{\pi a \sin \theta}{\lambda}$.
The wavelength of the monochromatic light used in the experiment is $\lambda=538 \mathrm{~nm}$. Therefore, the value of α at the point P on the screen will be

$$
\begin{aligned}
\alpha=\frac{\pi a \sin \theta}{\lambda} & =\frac{\pi \times 25.2 \times 10^{-6} \times \sin \left(0.186^{0}\right)}{538 \times 10^{-9}} \mathrm{rad} \\
& =\frac{\pi \times 25.2 \times 10^{-6} \times 3.25 \times 10^{-3}}{538 \times 10^{-9}} \mathrm{rad} \\
& =0.478 \mathrm{rad} .
\end{aligned}
$$

(c)

The intensity at a point P subtending an angle θ relative to the intensity of the central maximum is given by the relation
$\frac{I_{\theta}}{I_{0}}=\left(\frac{\sin \alpha}{\alpha}\right)^{2}=\left(\frac{\sin 0.478}{0.478}\right)^{2}=0.926$.

