654.

Problem 46.10 (RHK)

Manufacturers of wire (and other objects of small dimensions) sometimes use a laser to continually monitor the thickness of the product. The wire intercepts the laser beam, producing a diffraction pattern like that of a single slit of the same width as the wire diameter; see the figure. Suppose a He-Ne laser, wavelength 632.8 nm , illuminates a wire, the diffraction pattern being projected onto a screen 2.65 m away. If the desired wire diameter is 1.37 mm , we have to calculate the distance between the two tenth-order minima on each side of the central maximum.

Solution:

From the Babinet's principle we expect that the intensity pattern on the screen due to diffraction from the wire will be equivalent to that from a slit of width equal to the diameter of the wire. The position of the minima of diffraction pattern is given by the relation $a \sin \theta=m \lambda, m= \pm 1, \pm 2, \pm 3 \ldots$,
where a is the diameter of the wire and λ is the wavelength of the light used for producing the diffraction pattern.
As the angles θ will be small, we use the approximation $\sin \theta ; \tan \theta ; \frac{y}{D}$,
where y is the distance of minima from the principal shadow, and D is the distance of the screen from the wire.

Therefore, the distances of the $10^{\text {th }}$ minima on either side of the principal shadow will be
$y_{10}=\frac{10 \lambda D}{a}$,
and

$$
y_{-10}=-\frac{10 \lambda D}{a} .
$$

We thus find that

$$
\begin{aligned}
y_{10}-y_{-10}=\frac{20 \lambda D}{a} & =\frac{20 \times 632.8 \times 10^{-9} \times 2.65}{1.37 \times 10^{-3}} \mathrm{~m} \\
& =24.48 \mathrm{~mm} .
\end{aligned}
$$

