653.

Problem 46.9 (RHK)

A slit 1.16 mm wide is illuminated by light of wavelength 589 nm . The diffraction pattern is seen on a screen 2.94 m away. We have to find the distance between the first two diffraction minima on the same side of the central maximum.

Solution:

On the same side of the central maximum the diffraction minima are given by the relation
$a \sin \theta=m \lambda, m=1,2,3$.
where a is the slit width.
Therefore, the difference in angles of the first two minima will be
$\theta_{2}-\theta_{1}=\frac{\lambda}{a} \mathrm{rad}=\frac{589 \times 10^{-9}}{1.16 \times 10^{-3}} \mathrm{rad}=507.7 \times 10^{-6} \mathrm{rad}$.
As the angles θ_{1} and θ_{2} are very small, the approximation $\sin \theta ; \theta$ is justified.

The distance of the screen from the slit D is 2.94 m .
Therefore, the distance between the first two minima as seen on the screen will be

$$
\begin{aligned}
\Delta y=y_{2}-y_{1}=D \times\left(\theta_{2}-\theta_{1}\right) & =2.94 \times 507.7 \times 10^{-6} \mathrm{~m} \\
& =1.49 \mathrm{~mm} .
\end{aligned}
$$

