652.

Problem 46.5 (RHK)

A single slit is illuminated by light whose wavelengths are λ_a and λ_b , so chosen that the first diffraction minimum of the λ_a component coincides with the second minimum of the λ_b component. (a) We have to find the relationship that exists between the two wavelengths. (b) We have to find whether there are any other minima in the two patterns that coincide.

Solution:

(a)

The condition for diffraction minima in a single slit diffraction is

 $a\sin\theta = m\lambda, m = 1, 2, 3...$

It is given that the first diffraction minimum of the λ_a component coincides with the second minimum of the λ_b component. Therefore, we obtain the following relation by applying these conditions;

 $\lambda_a = 2\lambda_b.$

(b)

For answering the second part of the problem, we will determine integers m_a and m_b such that

$$m_a \lambda_a = m_b \lambda_b.$$

As
 $\lambda_a = 2\lambda_b,$
we have
 $2m_a = m_b.$

We find that the fourth minimum of λ_b will coincide with the second minimum of λ_a , and so on.

