652.

Problem 46.5 (RHK)

A single slit is illuminated by light whose wavelengths are λ_{a} and λ_{b}, so chosen that the first diffraction minimum of the λ_{a} component coincides with the second minimum of the λ_{b} component. (a) We have to find the relationship that exists between the two wavelengths. (b) We have to find whether there are any other minima in the two patterns that coincide.

Solution:

(a)

The condition for diffraction minima in a single slit diffraction is
$a \sin \theta=m \lambda, m=1,2,3 \ldots$
It is given that the first diffraction minimum of the λ_{a} component coincides with the second minimum of the λ_{b} component. Therefore, we obtain the following relation by applying these conditions;
$\lambda_{a}=2 \lambda_{b}$.
(b)

For answering the second part of the problem, we will determine integers m_{a} and m_{b} such that
$m_{a} \lambda_{a}=m_{b} \lambda_{b}$.
As
$\lambda_{a}=2 \lambda_{b}$,
we have
$2 m_{a}=m_{b}$.
We find that the fourth minimum of λ_{b} will coincide with the second minimum of λ_{a}, and so on.

