651.

Problem 46.3(RHK)

Monochromatic light of wavelength 441 nm falls on a narrow slit. On a screen 2.16 m away, the distance between the second minimum and the central maximum is 1.62 cm . (a) We have to calculate the angle of diffraction θ of the second minimum. (b) We have to find the width of the slit.

Solution:

Let the slit width be a. For a monochromatic light of wavelength λ the condition for diffraction minima is $a \sin \theta=m \lambda, m=1,2,3 \ldots$.

Data of the problem are:
The distance between the second minimum and central maximum is
$y_{2}=1.62 \mathrm{~cm}$.
And, the distance of the screen from the slit is
$D=2.16 \mathrm{~m}$.
The angle from the line joining the centre of the slit with the central maximum θ_{2} will be
$\theta_{2}=\frac{1.62 \times 10^{-2}}{2.16} \mathrm{rad}=0.0075 \mathrm{rad}=0.43^{\circ}$.
The angle θ_{2} is small, and we may approximate $\sin \theta_{2} ; \tan \theta_{2} ; \theta_{2}$.

We note that
$a \sin \theta_{2}=2 \lambda$,

Or
$a \theta_{2}=2 \lambda$,
or
$a=\frac{2 \lambda}{\theta_{2}}=\frac{2 \times 441}{0.0075} \mathrm{~nm}=118 \mu \mathrm{~m}$.

