649.

Problem 45.49 (RHK)

If mirror M_{2} in Michelson's interferometer is moved through 0.233 mm , 792 fringes are counted with a light meter. We have to find the wavelength of light.

Solution:

When one of the mirrors of the Michelson's interferometer, say M_{2}, is moved by 0.233 mm , the additional path difference between the rays that interfere to form fringe will be
$x=2 \times 0.233 \times 10^{-3} \mathrm{~m}$.
If 792 fringes are counted during the process, the path difference x will be related to wavelength λ as
$792 \lambda=0.466 \times 10^{-3} \mathrm{~m}$,
and
$\lambda=\frac{0.466 \times 10^{-3}}{792} \mathrm{~m}=588 \mathrm{~nm}$.

