647. 

## Problem 45.46 (RHK)

We have to show that in the Newton's rings experiment that (a) the difference in the radius between adjacent rings (maxima) is given by

$$
\Delta r=r_{m+1}-r_{m} \approx \frac{1}{2} \sqrt{\lambda R / m}
$$

assuming $m$ ? 1, and (b) that the area between the adjacent rings (maxima) is given by

$$
A=\pi \lambda R
$$

assuming $m$ ? 1. We note that this area is independent of $m$.

## Solution:

(a)

We recall from the preceding problem that the radius of the $m$ th bright Newton's ring is given by the relation

$$
r_{m+1}=\sqrt{(m+1 / 2) \lambda R}, m \text { an integer } ? 1
$$

Therefore,

$$
\begin{aligned}
\Delta r=r_{m+1}-r_{m} & =\sqrt{(m+1 / 2) \lambda R}-\sqrt{(m-1 / 2) \lambda R} \\
& =\sqrt{\lambda R m}\left((1+1 / 2 m)^{1 / 2}-(1-1 / 2 m)^{1 / 2}\right)
\end{aligned}
$$

Assuming that
$\frac{1}{m}=1$,
and using the approximation
$(1+1 / 2 m)^{1 / 2} ; 1+1 / 4 m$,
we find that
$\Delta r=r_{m+1}-r_{m} \approx \frac{1}{2} \sqrt{\lambda R / m}$.
(b)

From the above, we note that the area between the adjacent bright rings will be

$$
\begin{aligned}
A=\pi\left(r_{m+1}^{2}-r_{m}^{2}\right) & =\pi(m+1 / 2-m+1 / 2) \lambda R \\
& =\pi \lambda R,
\end{aligned}
$$

which is independent of $m$.

