635.

Problem 45.25 (RHK)

We have to show that the half-width $\Delta \theta$ of the double-slit interference fringes is given by

$$
\Delta \theta=\frac{\lambda}{2 d},
$$

if θ is small enough so that $\sin \theta ; \theta$. The half-width is the angle between the two points in the fringe where the intensity is one-half that at the centre of the fringe.

Solution:

We first work out the expression for the intensity of the resultant of two coherent waves with phase difference ϕ.

Let the electric field components of the two waves at a point P at time t be described by the functions
$E_{1}=E_{0} \sin (\omega t)$,
and
$E_{2}=E_{0} \sin (\omega t+\phi)$,
where $\omega(=2 \pi \nu)$ is the angular frequency of the waves and ϕ is the phase difference between them. We note
that ϕ depends upon the location of the point P, which is described by the angle θ in a double-slit experiment.

We have

$$
\begin{aligned}
E & =E_{1}+E_{2} \\
& =E_{\theta} \sin (\omega t+\beta),
\end{aligned}
$$

where the phase β is
$\beta=\frac{1}{2} \phi$,
and the amplitude is
$E_{\theta}=2 E_{0} \cos \beta$.
As the intensity I is proportional to the square of the amplitude, we note that
$I(\theta)=4 I_{0} \cos ^{2}\left(\frac{\phi}{2}\right)$,
and for small θ
$\phi=\frac{2 \pi}{\lambda} d \sin \theta ; \frac{2 \pi}{\lambda} d \theta$.
And
$I(\theta)=4 I_{0} \cos ^{2}\left(\frac{\pi d \theta}{\lambda}\right)$.
Let the centre of the m th- fringe be at angle θ_{m}. We have
$\frac{d \theta_{m}}{\lambda}=m$, where m is an integer. We note that
$I\left(\theta_{m}\right)=4 I_{0}$
Let the intensity is one-half that at the centre of the fringe at $\theta_{m}+\Delta \theta$. We therefore have
$I\left(\theta_{m}+\Delta \theta\right)=2 I_{0}$.
This implies that
$\cos ^{2}\left(\frac{\pi d}{\lambda}\left(\theta_{m}+\Delta \theta\right)\right)=\frac{1}{2}$,
or
$\frac{1}{2}\left\{\cos \left(\frac{2 \pi d}{\lambda} \theta_{m}+\frac{2 \pi d}{\lambda} \Delta \theta\right)+1\right\}=\frac{1}{2}$,
or
$\cos \left(\frac{2 \pi d}{\lambda} \Delta \theta\right)=0$.
This implies that
$\frac{2 \pi d}{\lambda} \Delta \theta= \pm \frac{\pi}{2}$,
or
$\Delta \theta= \pm \frac{\lambda}{4 d}$.
The half-width is the angle between the two points in the fringe where the intensity is one-half that at the centre of the fringe. Therefore, half-width of the fringe will be
$2|\Delta \theta|=\frac{\lambda}{2 d}$.

