634.

Problem 45.23 (RHK)

As shown in the figure, S_1 and S_2 are effective point sources of radiation, excited by the same oscillator. They are coherent and in phase with each other. Placed a distance d = 4.00 m apart, they emit equal amount of power in the form of 1.00-m wavelength electromagnetic waves. (a) We have to find the positions of the first (that is, the nearest), the second, and the third maxima of the received signal, as the detector D is moved out along Ox. We have to answer whether the intensity at the nearest minimum will be zero and give justification.

Solution:

Let the distance of the detector *D*, which is moved along the *x*-axis, from the source S_1 be x_D . As the source S_2 is at a distance *d* from S_1 , as shown in the figure, the distance from it to the detector *D* will be $\sqrt{x_D^2 + d^2}$. As the two sources emit equal amount of radiations are coherent, the phase difference between the waves reaching at D from S_2 and S_1 will be

$$\phi = \frac{2\pi}{\lambda} \left(\sqrt{x_D^2 + d^2} - x_D \right) \, .$$

The intensity maxima at the detector will occur at locations where $\phi = 2m\pi$, $m = 0, \pm 1, \pm 2, \pm 3,...$ Therefore, three maxima will be at

$$\phi = 2\pi,$$

$$\phi = 4\pi,$$

$$\phi = 6\pi.$$

We solve these equations algebraically, and note that the first, second, and the third maxima will occur when detector D is at locations given below.

$$(x_D)_1 = \frac{d^2 - \lambda^2}{2\lambda},$$

$$(x_D)_2 = \frac{d^2 - 4\lambda^2}{4\lambda},$$

and

$$(x_D)_3 = \frac{d^2 - 9\lambda^2}{6\lambda}.$$

Substituting the values

$$d = 4.00 \text{ m},$$

and

 $\lambda = 1.00$ m, we find that the nearest maximum corresponds to $\phi = 6\pi$, and

 $x_D = 1.16 \text{ m}.$

The next one corresponds to $\phi = 4\pi$, and

$$x_D = 3.0 \text{ m},$$

And the third one corresponds to $\phi = 2\pi$, and

$$x_D = 7.5 \text{ m}.$$

Note for phase difference $\phi = 8\pi$, there is no interference as the detector will be on top of the source S_1 .

(b)

As the intensity varies as the inverse of square of the distance from the source, at the first minimum the amplitude of the wave from the source S_2 and the

amplitude of the wave from the source S_1 will not be equal and hence the intensity at the first minimum will not be zero.

