629.

Problem 45.3 (RHK)

A double-slit experiment is performed with bluegreen light of wavelength 512 nm . The slits are 1.2 mm apart and the screen is 5.4 m from the slits. We have to find the distance between the bright fringes as seen on the screen.

Solution:

where y is the distance on the screen of the interference maxima from the midpoint of the interference pattern, and D is the distance of the screen from the slits.

Therefore, the distance between the successive bright fringes will be
$\Delta y=\frac{\lambda D}{d}$.
We use the data of the problem;
$\lambda=512 \mathrm{~nm}=512 \times 10^{-9} \mathrm{~m}$,
$D=5.4 \mathrm{~m}$, and
$d=1.2 \mathrm{~mm}=1.2 \times 10^{-3} \mathrm{~m}$.
We find
$\Delta y=\frac{512 \times 10^{-9} \times 5.4}{1.2 \times 10^{-3}} \mathrm{~m}=2.3 \mathrm{~mm}$.

