628.

Problem 44.43 (RHK)

A photographer stands 44.5 m from a rail road track, the line of vision being perpendicular to the tracks. A train passes at $135 \mathrm{~km} / \mathrm{h}$ and the photographer takes a picture. Using a camera with focal length 3.6 cm , we have to find the maximum exposure time so that the blurring of the image on the film does not exceed 0.75 mm .

Solution:

As the photographer stands at a distance of 44.5 m from the railroad track, the image will be at the focal plane of the lens. Therefore, the image distance will be the focal length, which is 3.6 cm .

The line of sight of the photographer is perpendicular to the train. Let the shutter time for the exposure be $t \mathrm{~s}$. The train which is moving at $135 \mathrm{~km} / \mathrm{h}$ will have travelled a distance of $D \mathrm{~m}$ in $t \mathrm{~s}$. We want to adjust the maximum exposure time so that the blurring of the image on the film does not exceed 0.75 mm .

We use the result that the magnitude of the lateral magnification is given by
$|m|=\left|\frac{i}{o}\right|=\frac{3.6 \times 10^{-2}}{44.5}=8.0 \times 10^{-2}$.
Therefore, D can be determined from the requirement that the size of the image is 0.75 mm . We find
$D=\frac{0.75 \times 10^{-3}}{8.0 \times 10^{-2}} \mathrm{~m}=0.93 \mathrm{~m}$.
As the train is moving at $135 \mathrm{~km} / \mathrm{h}$ the maximum exposure time will therefore be
$t=\frac{0.93}{135 \times 10^{3} / 60 \times 60} \mathrm{~s}=25 \mathrm{~ms}$.

