627.

Problem 44.40 (RHK)

The focal length of a small camera is 50 mm and the focusing range extends from 1.2 m out to infinity. We have to find the range of movement necessary between lens and film.

Solution:

When light from infinity is focussed on the film, the separation between the lens and the film is the focal length f, which is 50 mm . For focussing an object at a distance of 1.2 m from the lens, let the distance between the lens and the film be $i \mathrm{~m}$. From the thin lens formula, we have
$\frac{1}{1.20 \mathrm{~m}}+\frac{1}{i}=\frac{1}{0.05 \mathrm{~m}}$,
or
$i=\frac{0.05 \times 1.2}{1.15} \mathrm{~m}=0.05217 \mathrm{~m}=52.2 \mathrm{~mm}$.
Therefore, the range of movement necessary between lens and film for focussing range from 1.2 m to infinity
by a camera of focal length 50 mm will be 52.2 mm to 50 mm.

