624.

Problem 44.33 (RHK)

Two thin lenses of focal length f_{1} and f_{2} are in contact. We have to show that they are equivalent to a single thin lens with a focal length given by

$$
f=\frac{f_{1} f_{2}}{f_{1}+f_{2}} .
$$

Solution:

Let us consider a beam of light parallel to the common axis of the two lenses, which is incident from the left on the lens of focal length f_{1}. The first lens of focal length f_{1} will form a real image at its focal point, which is at a distance f_{1} to the right of it. But to the second lens the rays will appear to come from a virtual object, as rays bent by the first lens enter it as though they are converging to a point to the right of the lens. Therefore, the object distance o_{2} for the second lens will be $-f_{1}$. It will form an image at a distance i_{2} from it. We find i_{2} using the thin lens formula. We have
$-\frac{1}{f_{1}}+\frac{1}{i_{2}}=\frac{1}{f_{2}}$,
Or
$i_{2}=\frac{f_{1} f_{2}}{f_{1}+f_{2}}$.
The image distance is positive. Therefore, the final image is real. As an incident parallel beam is focussed by the two lens combination at a distance $f=\frac{f_{1} f_{2}}{f_{1}+f_{2}}$ from
them, the two thin lenses in contact with each other are
equivalent to a thin lens of focal length $f=\frac{f_{1} f_{2}}{f_{1}+f_{2}}$.

