620.

Problem 44.24 (RHK)

We have to show that the distance between a real object and its real image formed by a thin converging lens is always greater than or equal to four times the focal length of the lens.

Solution:

As we are considering a real object and its real image formed by a thin converging lens, in the sign conventions that we are using the object distance o, and the image distance i will be real and positive numbers. The focal length f of a converging lens is also a real positive number. Let us call the distance between the object and its real image d. We have
$d=o+i$.
We consider the thin lens equation
$\frac{1}{o}+\frac{1}{i}=\frac{1}{f}$,
Or
$\frac{1}{(d-i)}+\frac{1}{i}=\frac{1}{f}$,
or
$i^{2}-i d+f d=0$.
The roots of this quadratic equation are
$i=\frac{d \pm \sqrt{d^{2}-4 f d}}{2}$.
As the image is real, the roots have to be real and positive. This imposes the condition that
$d^{2}-4 f d \geq 0$,
or
$d \geq 4 f$.

