618.

Problem 44.25 (RHK)

A luminous object and a screen are a fixed distance D apart. (a) We have to show that a converging lens of focal length f will form a real image on the screen for two positions of the object that are separated by

$$
d=\sqrt{D(D-4 f)} .
$$

(b) We have to show that the ratio of the two image sizes for these two positions is

$$
\left(\frac{D-d}{D+d}\right)^{2}
$$

Solution:

For answering this problem we will use the thin lens formula

$$
\frac{1}{o}+\frac{1}{i}=\frac{1}{f},
$$

and the expression for the lateral magnification

$$
m=-\frac{i}{o}
$$

where o is the object distance, i the image distance and f the focal length of the lens.
(a)

As we are considering real image formed by the lens, the image distance, i, will be positive. The object distance, o, will be $D-i$, as the object is at a distance D from the screen where the image is formed. Let the focal length of the converging lens be f. We thus have the equation
$\frac{1}{D-i}+\frac{1}{i}=\frac{1}{f}$,
or
$i^{2}-D i+f D=0$.
The roots of this quadratic equation are
$i=\frac{D \pm \sqrt{D^{2}-4 f D}}{2}$.
The object distances for the two image positions will therefore be

$$
\begin{aligned}
& o_{1}=D-\frac{D+\sqrt{D^{2}-4 f D}}{2}, \\
& o_{2}=D-\frac{D-\sqrt{D^{2}-4 f D}}{2} .
\end{aligned}
$$

We thus find that the distance between the two object positions for which real images are formed on the screen will be
$d=o_{1}-o_{2}=\sqrt{D^{2}-4 f D}=\sqrt{D(D-4 f)}$.
(b)

The ratio of the two image sizes for these two positions of the object will therefore be

$$
\begin{aligned}
=\frac{i_{2}}{o_{2}} \times \frac{o_{1}}{i_{1}} & =\frac{D-\sqrt{D^{2}-4 f D}}{D+\sqrt{D^{2}-4 f D}} \times \frac{D-\sqrt{D^{2}-4 f D}}{D+\sqrt{D^{2}-4 f D}} \\
& =\frac{(D-d)^{2}}{(D+d)^{2}}
\end{aligned}
$$

