617.

Problem 44.23 (RHK)

An illuminated slide is mounted 44 cm from a screen. We have to find how far a lens of focal length 11 cm has to be placed in order to obtain a focussed image on the screen.

Solution:

Let the distance of the lens from the screen when a sharp image of the object is formed on the screen be $x \mathrm{~cm}$. As the image is real and is formed on the R-side of the lens, the image distance will be positive and will be equal to x, that is $i=x$. The object distance, o, will be $(44-x) \mathrm{cm}$. Substituting the values of $o, i, f(=11 \mathrm{~cm})$ in the thin lens formula $\frac{1}{o}+\frac{1}{i}=\frac{1}{f}$,
we get the equation
$\frac{1}{44-x}+\frac{1}{x}=\frac{1}{11}$,
or
$x^{2}-44 x+22^{2}=0$,
Or
$(x-22)^{2}=0$,
and
$x=22 \mathrm{~cm}$.

