616.

Problem 44.19 (RHK)

The formula

$$
\frac{1}{o}+\frac{1}{i}=\frac{1}{f}
$$

is called the Gaussian form of the thin lens formula. Another form of this formula, the Newtonian form, is obtained by considering the distance x from the object to the first focal point and the distance x^{\prime} from the second focal point to the image. We have to show that

$$
x x^{\prime}=f^{2}
$$

Solution:

In a thin lens, there are two focal points, which are located at equal distances f from the lens on either side of the lens. When a point object is located at the first focal point F_{1}, parallel light emerges from the lens. The second focal point F_{2} is the point where parallel light is focussed by the lens. In a diverging lens these definitions are suitably modified.

We consider a converging thin lens.

We define x the distance of the object from the first focal point as
$x=o-f$,
and x^{\prime} the distance of the image from the second focal point as
$x^{\prime}=i-f$.
In the following we rewrite the Gaussian form of the thin lens equation in two different ways:
$\frac{1}{o}=\frac{i-f}{i f}=\frac{x^{\prime}}{i f}$,
and
$\frac{1}{i}=\frac{o-f}{o f}=\frac{x}{o f}$.
We thus have the relation
$\frac{1}{i}=\frac{x}{f} \times \frac{x^{\prime}}{i f}$,
or
$x x^{\prime}=f^{2}$.

