613.

Problem 44.12 (RHK)

A double-convex lens is to be made of glass with an index of refraction of 1.5 . One surface is to have twice the radius of curvature of the other and the focal length is to be 60 mm . We have to find the radii.

Solution:

The focal length f of lens is given by the relation
$\frac{1}{f}=(n-1)\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)$,
where r_{1} and r_{2} are the radius of curvature of the first and the second curved surfaces of the lens. In a convex lens the centre of curvature of the first curved face, C_{1}, lies in the R-side and therefore the radius of curvature $r_{1}=R$ is positive. The centre of curvature of the second face of the double-convex lens, C_{2}, lies in the V-side and therefore the radius of curvature $r_{2}=-2 R$ is negative.

We can solve for from the equation

$$
\begin{aligned}
\frac{1}{f} & =(1.5-1)\left(\frac{1}{R}+\frac{1}{2 R}\right) \\
& =\frac{0.5 \times 3}{2 R}
\end{aligned}
$$

$\therefore R=0.75 \times 60 \mathrm{~mm}=45 \mathrm{~mm}$.
Therefore, the radii of the double-convex lens are 45 mm and 90 mm .

