612.

Problem 44.13 (RHK)

Suppose that image of the Sun is focussed on a screen using a thin lens whose focal length is 27 cm . We have to find the diameter of the image.

Solution:

We will use the result that the magnitude of the lateral magnification of the size of an object and its image formed by a thin lens is given by the relation

$$
|m|=\left|\frac{i}{o}\right|,
$$

where o is the object distance and i is the image distance.

From the astronomical data we note that mean distance of the Earth from Sun, $o=1.50 \times 10^{11} \mathrm{~m}$, and the solar equatorial radius, $R_{\text {sun }}=6.96 \times 10^{8} \mathrm{~m}$.

As the image of the Sun is formed using a thin lens of focal length $f=27 \mathrm{~cm}$, the image distance $i=27 \mathrm{~cm}$.

Therefore, the diameter of the Sun's image as seen on a screen using a thin lens of focal length $f=27 \mathrm{~cm}$ will be

$$
\begin{aligned}
D_{\text {sun }}(\text { image }) & =2 \times 6.96 \times 10^{8} \times \frac{0.27}{1.50 \times 10^{11}} \mathrm{~m} \\
& =2.5 \times 10^{-3} \mathrm{~m}=2.5 \mathrm{~mm} .
\end{aligned}
$$

