607.

Problem 44.4 (RHK)

A luminous point is moving at speed v_{0} toward a spherical mirror, along its axis. (a) We have to show that the speed at which the image of this point object is moving is given by

$$
v_{i}=-\left(\frac{r}{2 o-r}\right)^{2} v_{0}
$$

Assuming that the mirror is concave, with $r=15 \mathrm{~cm}$ and that $v_{o}=5.0 \mathrm{~cm} \mathrm{~s}^{-1}$, we have to find the speed of the image (b) if the object is far outside the focal point $(o=75 \mathrm{~cm})$; (c) if it is close to the focal point $(o=7.7 \mathrm{~cm})$; and (d) if it is very close to the mirror $(o=0.15 \mathrm{~cm})$.

Solution:

Relation between the object distance, o, image distance, i, and the radius of curvature, r, for a spherical mirror is given by the equation

$$
\frac{1}{o}+\frac{1}{i}=\frac{2}{r}
$$

where we use the sign convention of Halliday Resnick and Krane.

We note from the spherical mirror equation that
$i=\frac{o r}{2 o-r}$.
Therefore, the speed of the image, v_{i}, is the time derivative of the image distance i.

We thus find

$$
\begin{aligned}
v_{i}=\frac{d i}{d t} & =\frac{r v_{o}}{2 o-r}-\frac{v r}{(2 o-r)^{2}} \times 2 v_{o} \\
& =-\left(\frac{r}{2 o-r}\right)^{2} v_{o}
\end{aligned}
$$

$$
v_{o}=\frac{d o}{d t}
$$

(a)

We are given that $r=15 \mathrm{~cm}$, and $v_{o}=5.0 \mathrm{~cm} \mathrm{~s}^{-1}$.
If the object is far outside the focal point $(o=75 \mathrm{~cm})$,

$$
\begin{aligned}
v_{i}=-\left(\frac{r}{2 o-r}\right)^{2} v_{0} & =-\left(\frac{15}{150-15}\right)^{2} \times 5.0 \mathrm{~cm} \mathrm{~s}^{-1} \\
& =-0.062 \mathrm{~mm} \mathrm{~s}^{-1} .
\end{aligned}
$$

(b)

If the object is close to the focal point $(o=7.7 \mathrm{~cm})$

$$
\begin{aligned}
v_{i}=-\left(\frac{r}{2 o-r}\right)^{2} v_{0} & =-\left(\frac{15}{15.4-15}\right)^{2} \times 5.0 \mathrm{~cm} \mathrm{~s}^{-1} \\
& =-70.3 \mathrm{~m} \mathrm{~s}^{-1} .
\end{aligned}
$$

(c)

If the object is very close to the mirror $(o=0.15 \mathrm{~cm})$,

$$
\begin{aligned}
v_{i}=-\left(\frac{r}{2 o-r}\right)^{2} v_{0} & =-\left(\frac{15}{0.30-15}\right)^{2} \times 5.0 \mathrm{~cm} \mathrm{~s}^{-1} \\
& =-5.21 \mathrm{~cm} \mathrm{~s}^{-1} .
\end{aligned}
$$

