606.

Problem 44.1 (RHK)

A concave shaving mirror has a radius of curvature of 35 cm . It is positioned do that the image of a man's face is 2.7 times the size of his face. We have to find the distance of the mirror from the man's face.

Solution:

The lateral magnification, m, is given in terms of the image distance, i, and the object distance, o, by the relation

$$
m=-\frac{i}{o}
$$

In a shaving mirror the image will be erect. Therefore, image distance, i, will be negative and the image will be virtual. As the lateral magnification of the size of the man's face seen in the concave mirror is 2.7 , we have $i=-2.7 \times o$,
where o is the distance of the man's face from the mirror (cm).

The mirror equation is
$\frac{1}{o}+\frac{1}{i}=\frac{2}{r}$.
In a concave mirror the centre of curvature is in the R side. In the standard sign convention, textbook Physics by Halliday Resnick and Krane, the radius of curvature r will be positive. We thus have

$$
\frac{1}{o}-\frac{1}{2.7 o}=\frac{2}{35} \mathrm{~cm}^{-1},
$$

or

$$
\begin{aligned}
& \frac{1.7}{2.7 \mathrm{o}}=\frac{2}{35} \mathrm{~cm}^{-1}, \\
& \text { and }
\end{aligned}
$$

$o=\frac{1.7 \times 35}{2 \times 2.7} \mathrm{~cm}=11.0 \mathrm{~cm}$.

