604.

Problem 43.42 (RHK)

A ray of light is incident normally on the face ab of a glass prism $(n=1.52)$, as shown in the figure. (a) Assuming that the prism is immersed in air, we have to find the largest value for the angle ϕ so that the ray is totally reflected at the face; (f) we have to find ϕ if the prism is immersed in water.

Solution:

Let n be the index of refraction of the glass prism and n^{\prime} be that of the outside medium in which the prism is kept. For total internal reflection to take place, it is necessary that
$n^{\prime}<n$.

The critical angle for total reflection θ_{c} is determined by the condition
$n \sin \theta_{c}=n^{\prime}$.
And this angle fixes the largest value of the prism angle $\phi_{\text {max }}$ for the incident light to get refracted along the edge of the prism, as shown in the figure. We have $\phi_{\text {max }}=\frac{\pi}{2}-\theta_{c}=\frac{\pi}{2}-\sin ^{-1}\left(\frac{n^{\prime}}{n}\right)$.
(a)

When the prism is kept in air, we have
$n=1.52$, and $n^{\prime}=1$.
$\therefore \phi_{\text {max }}=\frac{\pi}{2}-\sin ^{-1}\left(\frac{1}{1.52}\right)=\left(90^{\circ}-41.1^{0}\right)=48.9^{0}$.
(b)

When the prism is immersed in water $n^{\prime}=1.33$.
$\therefore \phi_{\max }=\frac{\pi}{2}-\sin ^{-1}\left(\frac{1.33}{1.52}\right)=\left(90^{\circ}-61^{\circ}\right)=29^{\circ}$.

