603.

Problem 43.49 (RHK)

In an optical fibre, different rays travel different paths along the fibre, leading to different travel times. This causes a light pulse to spread out as it travels along the fibre, resulting in information loss. The delay time should be minimised in designing a fibre. Consider a ray that travels a distance L along a fibre axis and another that is reflected, at the criticat angle, as it travels to the same distance as the first. (a) We have to show that the difference Δt in the time ofarrivals is given by

$$
\Delta t=\frac{L}{c} \frac{n_{1}}{n_{2}}\left(n_{1}-n_{2}\right)
$$

where n_{1} is the index of refraction of the core and n_{2} is the index of refraction of the cladding. (b) We have to evaluate Δt for the fibre in which $n_{1}=1.58$ and $n_{2}=1.53$, with $L=350 \mathrm{~km}$.

Solution:

We will refer to the problem 602, particularly to the figure in it for answering this problem.

As the refractive index of core of the fibre cable is n_{1} the time taken by a light pulse in travelling a distance L along its axis will be
$t_{1}=\frac{L}{v}=\frac{L}{c / n_{1}}=\frac{n_{1} L}{c}$.
As the refractive index of the cladding is n_{2}, the critical angle θ_{c} is given by $\sin \theta_{c}=\frac{n_{2}}{n_{1}}$.

A pulse that moves inside the fibre by total internal reflection covers a distanee Ialong the axis by travelling distance

$$
L^{\prime}=\frac{L}{\sin \theta_{c}}=\frac{n_{1} L}{n_{2}} .
$$

Therefore, the travel time for the pulse that moves inside the cable through total internal reflections will be $t_{2}=\frac{L^{\prime}}{v}=\frac{n_{1} L}{n_{2}} \times \frac{n_{1}}{c}=\frac{n_{1}^{2} L}{n_{2} c}$.

Hence, the time difference Δt in the arrival of the pulse that travels through total internal reflection and of the pulse that travels along the axis of the cable will be
$\Delta t=t_{2}-t_{1}=\frac{n_{1}^{2} L}{n_{2} c}-\frac{n_{1} L}{c}=\frac{L}{c} \times \frac{n_{1}}{n_{2}}\left(n_{1}-n_{2}\right)$.
(b)

We calculate Δt for the data of the problem:
$L=350 \mathrm{~km} ; n_{1}=1.58$ and $n_{2}=1.53$.

$$
\begin{aligned}
\Delta t & =\frac{350 \times 10^{3}}{3 \times 10^{8}} \times \frac{1.58}{1.53}(1.58-1.53) \mathrm{s} \\
& =60.2 \mu \mathrm{~s} .
\end{aligned}
$$

