602.

Problem 43.48 (RHK)

A particular optical fibre consists of a non-graded glass core (index of refraction n_{1}) surrounded by a cladding (index of refraction $n_{2}<n_{1}$). Suppose that a beam of light enters the fibre from air at angle θ with the fibre axis as shown in the figure. (a) We have to show that the greatest possible value of θ for which a ray can be propagated down the fibre is given by

$$
\theta=\sin ^{-1} \sqrt{n_{1}^{2}-n_{2}^{2}}
$$

(b) Assuming that the indices of refraction of the glass and the coating are 1.58 and 1.53 , respectively, we have to calculate the value of this angle.

Solution:

(a)

As shown in the figure, let a beam of light enter the optical fibre from air at incident angle θ. The angle of refraction θ^{\prime} in the glass is related to θ by the Snell's law. Let the index of refraction of the glass be n_{1}. We have

$$
\sin \theta=n_{1} \sin \theta^{\prime}
$$

This beam hits the glass-coating interface at angle of incidence, $\theta^{\prime \prime}=\frac{\pi}{2}-\theta^{\prime}$. For $\theta^{\prime \prime}$ greater than the critical angle θ_{c}, determined by the condition that $\sin \theta_{c}=\frac{n_{2}}{n_{1}}$,
beam that enters the optical fibre from air will travel by undergoing total internal reflection. Therefore, the maximum possible value of the angle θ with which the beam can enter the optical fibre from air so that it travels inside the optical fibre through process of total internal reflection will be given by

$$
\sin \theta_{\max }=n_{1} \sin \left(\frac{\pi}{2}-\theta_{c}\right)=n_{1} \cos \theta_{c}
$$

Or

$$
\begin{aligned}
\sin \theta_{\max }=n_{1} \sqrt{1-\sin ^{2} \theta_{c}} & =n_{1} \sqrt{1-\left(\frac{n_{2}}{n_{1}}\right)^{2}} \\
& =\sqrt{n_{1}^{2}-n_{2}^{2}}
\end{aligned}
$$

And, therefore,

$$
\theta_{\max }=\sin ^{-1} \sqrt{n_{1}^{2}-n_{2}^{2}}
$$

(b)

For $n_{1}=1.58$, and $n_{2}=1.53$, we find

$$
\theta_{\max }=\sin ^{-1} \sqrt{1.58^{2}-1.53^{2}}=22.59^{\circ}
$$

