600.

Problem 43.35 (RHK)

A point source of light is placed at a distance d in front of a screen S. A mirror M is put behind the source at distance d from it; as shown in the figure. We have to find the change in intensity at the screen S.

Solution:

Let I_{0} be the intensity of illumination because of the point source of light at the centre of the screen S in the absence of the mirror M. The distance of the point source from the screen S is d. When the mirror M is put at a distance d from the point source, the distance of the virtual image of the source from the screen will be $3 d$. As the point source radiates uniformly in all directions so will its image. As intensity of illumination from a point source varies inversely as square of distance from it, the
intensity at the centre of the screen when mirror is placed behind the point source will therefore be

$$
I=I_{0}+\frac{1}{9} I_{0}=\frac{10}{9} I_{0}
$$

