598.

Problem 43.29 (RHK)

We have to prove that if a plane mirror is rotated through an angle α, the reflected beam is rotated through an angle 2α.

Solution:

Let M be the initial position of the mirror. Let the incident ray i make an angle θ with the normal N to M. By the law of reflection from plane mirrors we note that the reflected ray r_{1} will be at angle θ with respect to the normal N; as shown in the figure.

Let the mirror be rotated by an angle α. As shown in the figure the normal N^{\prime} to the new position of the mirror M^{\prime} has turned by angle α from N. The angle of incidence of
the ray i with respect to the normal N^{\prime} is $(\theta-\alpha)$. The incident ray i is reflected by the mirror as ray r_{2}. The angle that ray r_{2} makes with the normal N^{\prime} will be $(\theta-\alpha)$. The angle that r_{2} makes with the normal N will be $(\alpha-(\theta-\alpha)=2 \alpha-\theta)$. Therefore, angle between r_{2} and r_{1} will be $((2 \alpha-\theta)+\theta=2 \alpha)$. Thus we have proved that if a plane mirror is turned by an angle α the reflected ray turns by angle 2α.

