
592.

Problem 43.17 (RHK)

A coin lies at the bottom of a pool with depth d and index of refraction n; as shown in the figure. We have to show that light rays that are close to the normal appear to come from a point $d_{app} = d/n$ below the surface. This distance is called the apparent depth of the pool.

Solution:

As shown in the figure, we view the coin from air close to the normal. Therefore, the angle of incidence θ is small and we use the small angle approximation $\sin \theta$; θ .

From Snell's law we find the angle of refraction θ_r . $n\sin\theta = \sin\theta_r$. In the small angle approximation, we have

 θ_r ; $n\theta$,

where n is the index of refraction of water with respect to

air. As the depth of the pond is *d*, we note

 $a = d \tan \theta$; $d\theta$,

and

$$a = d_{app} \tan \theta_r$$
; $d_{app} \theta_r$.

This gives that

$$d_{app} = \frac{\theta}{\theta_r} d = \frac{d}{n}$$

