590.

Problem 43.12 (RHK)

Light from a laser enters a glass block at A and emerges at B; see the figure. The glass block has a length $L=54.7 \mathrm{~cm}$ and an index of refraction $n=1.63$. The angle of incidence is $\theta=24.0^{\circ}$. We have to find the time needed for light to pass through the block.

Solution:

The length of the glass block, $L=54.7 \mathrm{~cm}$.
The index of refraction of the glass, $n=1.63$.
The angle of incidence of the laser beam, $\theta_{i}=24.0^{\circ}$.
Therefore, the angle of refraction of the laser beam inside the glass block can be determined from the Snell's law,
$\sin \theta_{r}=\frac{\sin \theta_{i}}{n}=\frac{\sin 24^{0}}{1.63}=0.249$,
and
$\theta_{r}=\sin ^{-1}(0.249)=14.45^{0}$.
The path length of the laser beam inside the glass block will therefore be
$L^{\prime}=\frac{L}{\cos \left(14.45^{0}\right)}=\frac{54.7}{0.968} \mathrm{~cm}=56.48 \times 10^{-2} \mathrm{~m}$.
The speed of light inside the glass block will be
$v=\frac{c}{n}=\frac{3.0 \times 10^{8}}{1.63} \mathrm{~m} \mathrm{~s}^{-1}=1.84 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$.
Therefore, the time needed for the light to pass through the block will be
$t=\frac{56.48 \times 10^{-2}}{1.84 \times 10^{8}} \mathrm{~s}=3.06 \mathrm{~ns}$.

