584.

Problem 42.23 (RHK)

A source of light, at rest in the S^{\prime} frame, emits radiation uniformly in all directions. (a) We have to show that the fraction of light emitted into a cone of half-angle θ^{\prime} is given by

$$
f=\frac{1}{2}\left(1-\cos \theta^{\prime}\right) .
$$

We have to calculate f for $\theta^{\prime}=30^{\circ}$. (b) When the source is viewed from S, the relative velocity of the two frames being 0.80 c, we have to find the value of θ (in frame S) using the relativistic aberration formula

$$
\tan \theta=\frac{\sin \theta^{\prime} \sqrt{1-u^{2} / c^{2}}}{\cos \theta^{\prime}+u / c}
$$

We have to repeat the calculation for $u / c=0.90$ and $u / c=0.990$. From our calculations we have to conclude why the aberration phenomenon is often referred to as the "headlight effect".

Solution:

(a)

The area spanned by a cone of half-angle θ^{\prime} on the surface of a sphere of radius r will be given by the integral

$$
\begin{aligned}
A & =\int_{0}^{\theta^{\prime}}(2 \pi r \sin \theta) \times r d \theta \\
& =2 \pi r^{2}\left[-\cos \theta^{\prime}\right]_{0}^{\theta^{\prime}}=2 \pi r^{2}(1-\cos \theta) .
\end{aligned}
$$

As the source of light is emitting radiation uniformly in all directions it will be distributed uniformly in area $4 \pi r^{2}$ at a distance r from the source. Therefore, the fraction of light contained in the cone of half-angle θ^{\prime} will be
$f=\frac{A}{4 \pi r^{2}}=\frac{1}{2}\left(1-\cos \theta^{\prime}\right)$.

For $\theta^{\prime}=30^{\circ}$ the f will be
$f\left(30^{0}\right)=\frac{1}{2}(1-0.866)=0.067$.
(b)

Using the relativistic aberration formula, we calculate next the angle θ for $\theta^{\prime}=30^{\circ} ; u / c=0.80, u / c=0.90$ and $u / c=0.990$.

The relativistic aberration formula is
$\tan \theta=\frac{\sin \theta^{\prime} \sqrt{1-u^{2} / c^{2}}}{\cos \theta^{\prime}+u / c}$
For $\theta^{\prime}=30^{\circ}$, we have
$\tan \theta=\frac{0.5 \times \sqrt{1-(u / c)^{2}}}{0.866+u / c}$
We thus find that for $u / c=0.80$,
$\theta=10.2^{0}$;
for $u / c=0.90$,
$\theta=7^{0} ;$
and for $u / c=0.990$,
$\theta=2^{0}$.
The above calculations reveal that as the speed of the source increases the width of the light cone as observed
by a stationary observer narrows down, as happens in a moving "head light".

