577.

Problem 42.9 (RHK)

We have to show that, for the 21.1-cm line so much used by radio astronomers, a Doppler frequency shift in kHz can be converted into a radial velocity in $\mathrm{km} \mathrm{s}^{-1}$ by multiplying by 0.211 provided that $u=c$.

Solution:

Frequency of the 21.1 cm line is
$v_{0}=\frac{c}{21.1 \times 10^{-2}} \mathrm{~Hz}$,
and the magnitude of the longitudinal Doppler frequency shift for a source moving with radial velocity $u=c$ will be
$\Delta v=\frac{u}{c} \times v_{0}=\frac{u}{c} \times \frac{c}{21.1 \times 10^{-2}} \mathrm{~Hz}=\frac{u}{21.1 \times 10} \mathrm{kHz}$,
and
$u=211 \times(\Delta v \mathrm{kHz}) \mathrm{m} \mathrm{s}^{-1}=0.211 \times(\Delta v \mathrm{kHz}) \mathrm{km} \mathrm{s}^{-1}$.

