574.

Problem 41.39 (RHK)

A plane electromagnetic wave, with wavelength 3.18 m , travels in a free space in the $+x$ direction with its electric vector \dot{E}, of amplitude $288 \mathrm{~V} \mathrm{~m}^{-1}$, directed along the y axis. We have to find (a) the frequency of the wave; (b) the direction and amplitude of the magnetic field associated with the wave; (c) If $E=E_{m} \sin (k x-\omega t)$, the values of k and ω; (d) the intensity of the wave; and (e) assuming that the wave falls upon a perfectly absorbing sheet of area $1.85 \mathrm{~m}^{2}$, the rate with which the momentum is being delivered to the sheet and the radiation pressure exerted on the sheet.

Solution:

(a)

Wavelength of the plane electromagnetic wave $\lambda=3.18 \mathrm{~m}$.

The frequency of the wave will be
$v=\frac{c}{\lambda}=\frac{3 \times 10^{8}}{3.18} \mathrm{~Hz}=9.43 \times 10^{7} \mathrm{~Hz}=94.3 \mathrm{MHz}$.
(b)

The amplitude of the electric field is
$E_{m}=288 \mathrm{~V} \mathrm{~m}^{-1}$.
As the electric and magnetic fields for a plane wave are related as
$E_{m}=c B_{m}$,
the amplitude of the magnetic field will be
$B_{m}=\frac{288}{3 \times 10^{8}} \mathrm{~T}=960 \mathrm{nT}$.
As the electric field is directed along the y axis, we have ${ }^{1}=|\stackrel{1}{E}| \hat{j}$.

As the wave is travelling in the $+x$ direction, the direction of the Poynting vector
$\stackrel{\mathrm{r}}{S}=\frac{1}{\mu_{0}} \stackrel{\mathrm{r}}{E} \times \stackrel{\mathrm{r}}{B}$,
will be \hat{i}. That is
$\stackrel{1}{S}=|\stackrel{1}{S}| \hat{i}$.
From the property of the cross product we note that the magnetic field will be in the z direction. That is

$$
\stackrel{1}{B}=|\stackrel{1}{B}| \hat{k}
$$

(c)

We recall
$k=\frac{2 \pi}{\lambda}$ and $\omega=2 \pi \nu$.
Therefore,
$k=\frac{2 \pi}{3.18} \mathrm{~m}^{-1}=1.976 \mathrm{~m}^{-1}$,
and
$\omega=2 \pi \nu=2 \pi \times 9.434 \times 10^{7} \mathrm{rad} \mathrm{s}^{-1}$ $=5.925 \times 10^{8} \mathrm{rad} \mathrm{s}^{-1}$
(d)

Intensity of the wave

$$
\begin{aligned}
I=\bar{S}=\frac{1}{2 \mu_{0} c} E_{m}^{2} & =\frac{(288)^{2}}{2 \times 4 \times \pi \times 10^{-7} \times 3 \times 10^{8}} \mathrm{~W} \mathrm{~m}^{-2} \\
& =110 \mathrm{~W} \mathrm{~m}^{-2} .
\end{aligned}
$$

(e)

When the wave falls normally upon a perfectly absorbing sheet of area $1.85 \mathrm{~m}^{2}$, the rate at which momentum will be delivered to the sheet will be

$$
F_{r a d}=\frac{I}{c} \times A=\frac{110 \times 1.85}{3 \times 10^{8}} \mathrm{~N}=678 \mathrm{nN}
$$

The radiation pressure exerted on the sheet will be

$$
\frac{F_{r a d}}{A}=\frac{I}{c}=\frac{110}{3 \times 10^{8}} \mathrm{~Pa}=367 \mathrm{nPa} .
$$

