570.

Problem 41.45 (RHK)

A helium-neon laser of the type often found in the physics laboratories has a beam power output of 5.00 mW at a wavelength of 633 nm . The beam is focussed by a lens to a circular spot whose effective diameter may be taken to be 2.10 wavelengths. We have to calculate (a) the intensity of the focussed beam; (b) the radiation pressure exerted on a tiny, perfectly absorbing sphere whose diameter is that of the focal spot; (c) the force exerted on this sphere; and (d) the acceleration imparted to it. We may assume that the density of the sphere is $4.88 \mathrm{~g} \mathrm{~cm}^{-3}$.

Solution:

(a)

As the laser beam, wavelength $\lambda=633 \times 10^{-9} \mathrm{~m}$, and power 5.00 mW is focussed to a circular spot of effective diameter

$$
d=2.10 \lambda=2.10 \times 633 \times 10^{-9} \mathrm{~m},
$$

the intensity of the focussed beam will be

$$
\begin{aligned}
I=\frac{P}{\left(\pi d^{2} / 4\right)} & =\frac{5.0 \times 10^{-3}}{\left(\pi \times\left(2.10 \times 633 \times 10^{-9}\right)^{2} / 4\right)} \mathrm{W} \mathrm{~m}^{-2} \\
& =3.60 \times 10^{9} \mathrm{~W} \mathrm{~m}^{-2}=3.60 \mathrm{GW} \mathrm{~m}^{-2} .
\end{aligned}
$$

(b)

The radiation pressure exerted on a tiny, perfectly absorbing sphere whose diameter is that of the focal spot will be
$\frac{I}{c}=\frac{3.60 \times 10^{9}}{3 \times 10^{8}} \mathrm{~Pa}=12 \mathrm{~Pa}$.
(c)

The force exerted by the laser radiation on the sphere will be

$$
\begin{aligned}
F=\frac{I}{c}\left(\pi d^{2} / 4\right)=\frac{P}{c} & =\frac{5.0 \times 10^{-3}}{3 \times 10^{8}} \mathrm{~N} \\
& =16.66 \mathrm{pN}
\end{aligned}
$$

(d)

Mass of the sphere

$$
\begin{aligned}
m & =\frac{4 \pi}{3} \times\left(\frac{d}{2}\right)^{3} \times \rho \\
& =\frac{4 \pi}{3} \times\left(1.05 \times 633 \times 10^{-9}\right)^{3} \times 4.88 \times 10^{3} \mathrm{~kg} \\
& =6.00 \times 10^{-15} \mathrm{~kg}
\end{aligned}
$$

Therefore, the acceleration imparted to the sphere by the laser beam will be

$$
a=\frac{F}{m}=\frac{16.66 \times 10^{-12}}{6.00 \times 10^{-15}} \mathrm{~m} \mathrm{~s}^{-2}=2.77 \mathrm{~km} \mathrm{~s}^{-2} .
$$

