Problem 41.44 (RHK)

A small spaceship whose mass, with occupant, is 1500 kg is drifting in outer space, where the gravitational field is negligible. If the astronaut turns on a 10.0-kW laser beam, we have to find the speed that the spaceship would attain in one day because of the reaction force associated with the momentum carried away by the beam.

Solution:

From the principle of conservation of momentum, we note that there will be a force F on the space ship equal in magnitude to the momentum acquired per second by the spaceship because of emission of the 10.0-kW laser beam. The magnitude of F will be

$$F = \frac{P}{c} = \frac{10 \times 10^3}{3 \times 10^8} \text{ N} = 33.33 \times 10^{-6} \text{ N}.$$

As the mass of the spaceship is 1500 kg, the acceleration of the spaceship because of the laser beam emission will be

$$a = \frac{F}{M} = \frac{33.33 \times 10^{-6}}{1500}$$
 m s⁻² = 2.22×10⁻⁸ m s⁻².

We note that

$$1 \text{ day} = 8.640 \times 10^4 \text{ s.}$$

The speed gained by the spaceship because a 10.0-kW laser is kept on for one day will therefore be

$$v = at = 2.222 \times 10^{-8} \times 8.640 \times 10^{4} \text{ m s}^{-1}$$

= $0.192 \times 10^{-2} \text{ m s}^{-1} = 1.92 \text{ mm s}^{-1}$.

