566.

Problem 41.41 (RHK)

Radiation of intensity I is normally incident on an object that absorbs a fraction f of it and reflects the rest. We have to find the radiation pressure.

Solution:

Let us consider a unit area of the object on which radiation of intensity I is normally incident. It is given that the object absorbs a fraction f of it and reflects the rest. Pressure on the object due to the fraction of the radiation that is absorbed will be equal to the momentum transferred to the object.

$$
p_{a b s}=\frac{I f}{c} .
$$

The fraction of the radiation that is reflected will be $(1-f) I$ and therefore the momentum transferred per unit time on a unit area of the object because of reflection of the radiation will be
$\Delta p_{\text {ref }}=\frac{2 I(1-f)}{c}$,
which will be the additional pressure on the object.
Therefore, the total pressure on the object due to radiation will be

$$
\text { pressure }=\frac{I f}{c}+\frac{2 I(1-f)}{c}=\frac{I(2-f)}{c} .
$$

