563.

Problem 41.23 (RHK)

A HeNe laser, radiating at 632.8 nm , has a power output of 3.10 mW and a full-angle beam divergence of $172 \mu \mathrm{rad}$. We have to find (a) the intensity of the beam 38.2 m from the laser; (b) and calculate the power output of an isotropic source that provides the same intensity at the same distance.

Solution:

(a)

The area subtended by a cone of angular size θ at a distance r from its vertex is $\frac{1}{4} \pi(r \theta)^{2}$
Therefore, the area subtended by the laser beam of fullangle divergence of $172 \mu \mathrm{rad}$ at a distance of 38.2 m will be

$$
A=\frac{\pi}{4}\left(172 \times 10^{-6} \times 38.2\right)^{2} \mathrm{~m}^{2}=33.9 \times 10^{-6} \mathrm{~m}^{2}
$$

The power output of the HeNe laser is 3.10 mW .
Therefore, the intensity of the laser beam at a distance of 38.2 m from the laser will be
$I=\frac{3.10 \times 10^{-3}}{33.9 \times 10^{-6}} \mathrm{~W} \mathrm{~m}^{-2}=91.4 \mathrm{~W} \mathrm{~m}^{-2}=9.14 \mathrm{~mW} \mathrm{~cm}^{-2}$.
(b)

The power output of an isotropic source that will provide the intensity of $9.14 \mathrm{~mW} \mathrm{~cm}^{-2}$ at a distance of 38.2 m will therefore be

$$
P=\left(4 \pi \times 38.2^{2}\right) \times 91.4 \mathrm{~W}=1.676 \mathrm{MW} .
$$

