561.

Problem 41.31 (RHK)

A coaxial cable (inner radius a, outer radius b) is used as a transmission line between a battery E and a resistance R, as shown in the figure. (a) We have to calculate E, B for $a<r<b$; (b) calculate the Poynting vector $\stackrel{\dot{S}}{\mathrm{~S}}$ for $a<r<b$; (c) by suitably integrating the Poynting vector show that the total power flowing across the annular cross section $a<r<b$ is E^{2} / R. We have to answer whether this is reasonable. (d) We have to show that the direction of \dot{S} is always from the battery to the resistor, no matter which way the battery is connected.

Solution:

(a)

As the outer and the inner surfaces of the coaxial cable are connected to a battery of emf E, the electric field inside the region between the two current carrying parts of the cable will be radial and of magnitude

$$
E=\frac{\mathrm{E}}{b-a}
$$

where b is the outer radius and a is the inner radius of the cable.

As the cable forms a circuit with a resistor of resistance R connected to the battery, there will be a current flow of magnitude
$i=\frac{\mathrm{E}}{R}$, for $a<r<b$.
Because of the current flow in the inner part of the coaxial cable and the cylindrical symmetry of the cable there will be a circular magnetic field about the axis of the cable of magnitude

$$
B(r)=\frac{\mu_{0} i}{2 \pi r}, \text { for } a<r<b
$$

(b)

The magnetic field vector $\stackrel{1}{B}(r)$ and the electric field vector \hat{E} will be perpendicular to each other and it can be seen that $\stackrel{1}{E} \times \stackrel{1}{B}$ will be parallel to the axis of cable pointing in the direction of the flow of current from the battery to the resistor. Therefore, the magnitude of $\stackrel{1}{E} \times \stackrel{1}{B}$ at radial distance r from the axis of the cable will be $|\stackrel{\mathrm{r}}{E} \times \stackrel{\mathrm{r}}{B}|=E B=\frac{\mathrm{E}}{b-a} \times \frac{\mu_{0} i}{2 \pi r}$, for $a<r<b$.
(c)

Integrating the Poynting vector $\dot{S}=\left(1 / \mu_{0}\right) \stackrel{\rightharpoonup}{E} \times \stackrel{\dot{B}}{ }$ over any annular cross section of the cable, we can obtain the power flowing inside the cable. We find
$\int \stackrel{\mathrm{r}}{S} \cdot \mathrm{r} A=\frac{\mathrm{Ei}}{(b-a)} \int_{a}^{b} \frac{1}{2 \pi r} \times 2 \pi r d r=\mathrm{Ei}$.
As
$i=\frac{\mathrm{E}}{R}$,
the power flowing inside the cable

$$
\int \stackrel{\mathrm{r}}{S} . d A=\frac{\mathrm{r}}{\mathrm{E}^{2}} \frac{R}{R}
$$

is equal to the Joule dissipation of the energy by the resistor.

