559.

Problem 41.29 (RHK)

We consider the possibility of standing electromagnetic waves

$$
\begin{aligned}
& E=E_{m}(\sin \omega t)(\sin k x), \\
& B=B_{m}(\cos \omega t)(\cos k x) .
\end{aligned}
$$

We have to show (a) that these satisfy

if E_{m} is suitably related to B_{m} and ω is suitably related to k. (b) We have to find the (instantaneous) Poynting vector. (c) We have to show the time-average power flow across any area is zero. (d) We have to describe the flow of energy in this situation.

Solution:

We describe the standing electromagnetic waves by the functions

$$
\begin{aligned}
& E=E_{m}(\sin \omega t)(\sin k x) \\
& B=B_{m}(\cos \omega t)(\cos k x)
\end{aligned}
$$

From these functions we obtain the following partial derivatives:

$$
\begin{aligned}
& \frac{\partial E}{\partial x}=E_{m} k \sin \omega t \cos k x \\
& \frac{\partial B}{\partial t}=-B_{m} \omega \sin \omega t \cos k x
\end{aligned}
$$

$$
\frac{\partial B}{\partial x}=-B_{m} k \cos \omega t \sin k x
$$

$$
\begin{aligned}
& \text { and } \\
& \frac{\partial E}{\partial t}=E_{m} \omega \cos \omega t \sin k x .
\end{aligned}
$$

We require that the partial derivates of the E and B fields
satisfy the relations

$$
\begin{aligned}
& \frac{\partial E}{\partial x}=-\frac{\partial B}{\partial t} \\
& \frac{\partial B}{\partial x}=-\mu_{0} \varepsilon_{0} \frac{\partial E}{\partial t}
\end{aligned}
$$

We note that we get the equations
$E_{m} k \sin \omega t \cos k x=B_{m} \omega \sin \omega t \cos k x$, and
$B_{m} k \cos \omega t \sin k x=\mu_{0} \varepsilon_{0} E_{m} \omega \cos \omega t \sin k x$.
These equations will be satisfied provided
$E_{m} k=B_{m} \omega$,
and
$B_{m} k=\mu_{0} \varepsilon_{0} E_{m} \omega$,
or
$\frac{E_{m}}{B_{m}}=\frac{\omega}{k},\left(\frac{\omega}{k}\right)^{2}=\frac{1}{\mu_{0} \varepsilon_{0}}=c^{2}$,
where c is the speed of electromagnetic waves in vacuum.

Therefore,
$\frac{E_{m}}{B_{m}}=c$.
(b)

Assuming that the E and ${ }^{-1}$ fields are perpendicular, the magnitude of the Poynting vector S will be given by the expression
$S=\frac{1}{\mu_{0}} E_{m} B_{m} \sin \omega t \cos \omega t \sin k x \cos k x$
$=\frac{1}{4 \mu_{0}} E_{m} B_{m} \sin 2 \omega t \cos 2 k x$.
(c)

Time average of S will be
$\bar{S}=\frac{1}{4 \mu_{0}}\langle\sin 2 \omega t\rangle \sin 2 k x$.
As
$\langle\sin 2 \omega t\rangle=0$,
$\bar{S}=0$.
(d)

There is no flow of energy along the length and we have standing waves.

