558.

Problem 41.28 (RHK)

A copper wire (diameter $=2.48 \mathrm{~mm}$;
resis \tan ce 1.00Ω per 300 m) carries a current of
25.0 A. We have to calculate (a) the electric field, (b) the magnetic field, and (c) the Poynting vector magnitude for a point on the surface of the wire.

Solution:

(a)

Electric field E, the resistivity ρ, and the current density j are related as

$$
\rho=\frac{E}{j}
$$

and the resistance R of a conducting wire of length 1 , cross-sectional area A, and resistivity ρ is given by the relation

$$
R=\frac{\rho l}{A} .
$$

Therefore,
$E=\frac{j R A}{l}=\frac{i R}{l}$,
where i the current flowing through a conductor of cross-sectional area A is $j A$. It is given that the resistance per unit length of the copper wire
$\frac{R}{l}=\frac{1}{300} \Omega \mathrm{~m}^{-1}$.
Therefore, the electric field at the surface of the wire will be
$E=25.0 \times \frac{1}{300} \mathrm{~V} \mathrm{~m}^{-1}=8.33 \times 10^{-2} \mathrm{~V} \mathrm{~m}^{-1}$.
(b)

We will use the Ampere's law for finding the magnetic field at the surface of the wire. If the radius of the wire is r, the magnetic field B and the current i are related as
$2 \pi r B(r)=\mu_{0} i$.
Therefore,
$B(r)=\frac{\mu_{0} i}{2 \pi r}=\frac{2 \times 10^{-7} \times 25}{1.24 \times 10^{-3}} \mathrm{~T}=4.03 \times 10^{-3} \mathrm{~T}$.
(c)

As the electric field $E(r)$ and the magnetic field $B(r)$ are orthogonal at the surface of the current carrying wire, the magnitude of the Poynting vector will be given by

$$
\begin{aligned}
S=\frac{1}{\mu_{0}} E B=\frac{1}{\mu_{0}} \times \frac{i R}{l} \times \frac{\mu_{0} i}{2 \pi r} & =\frac{i^{2} R}{2 \pi r l} \\
& =\frac{25^{2}}{300 \times 2 \pi \times 1.24 \times 10^{-3}} \mathrm{~W} \mathrm{~m}^{-2} \\
& =267.4 \mathrm{~W} \mathrm{~m}^{-2} .
\end{aligned}
$$

