557.

Problem 41.27 (RHK)

The average intensity of sunlight, falling at normal incidence just outside the Earth's atmosphere, varies during the year due to the changing Earth-Sun distance. We have to show that the fractional yearly variation is given by $\Delta I / I=4 e$ approximately, where e the eccentricity of the Earth's elliptical orbit around the Sun.

Solution:

Let a be the semi-major axis of the Earth's elliptic orbit and e be the eccentricity of the orbit.

The aphelion (the maximum distance of the Earth from the Sun) is given by

$$
r_{a p}=a(1+e)
$$

and the perihelion (the minimum distance of the Earth from the Sun) is given by

$$
r_{p e}=a(1-e) .
$$

The maximum variation in intensity of the sunlight will therefore be
$\Delta I=I($ perihelion $)-I($ aphelion $)$

$$
\begin{aligned}
& =\frac{\alpha}{a^{2}(1-e)^{2}}-\frac{\alpha}{a^{2}(1+e)^{2}} \\
& =\frac{\alpha\left((1+e)^{2}-(1-e)^{2}\right)}{a^{2}\left(1-e^{2}\right)^{2}} ; \frac{4 e \alpha}{a^{2}},
\end{aligned}
$$

where α is a constant related to the Sun's radiating power.

As average intensity of the sunlight at the Earth is given by
$I=\frac{\alpha}{a^{2}}$,
we note that

$$
\frac{\Delta I}{I}=4 e .
$$

