550.

Problem 38.22 (HR)

We have to calculate expressions for the following four quantities, considering both $r<R$ and $r>R$:
(a) $B(r)$ for a current i in a long wire of radius R;
(b) $E(r)$ for a long uniform cylinder of charge of radius R;
(c) $B(r)$ for a parallel-plate capacitor, with circular plates of radius R, in which E is changing at a constant rate; and
(d) $E(r)$ for a cylindrical region of radius R in which a uniform magnetic field is changing at constant rate.

Solution:

(a)

For finding $B(r)$ for a current i in a long wire of radius
R we will use Ampere's law
$\tilde{N}^{1} \cdot{ }^{\mathrm{r}} \cdot \mathrm{s}^{\mathrm{r}}=\mu_{0} \mathrm{i}$.
Case $r>R$:
$2 \pi r B(r)=\mu_{0} i$,
or
$B(r)=\frac{\mu_{0} i}{2 \pi r}$.
Case $r<R$:
$2 \pi r B(r)=\mu_{0} i \times\left(\frac{\pi r^{2}}{\pi R^{2}}\right)$,
or
$B(r)=\frac{\mu_{0} i}{2 \pi} \times\left(\frac{r}{R^{2}}\right)$.
(b)

We will use Gauss law for finding $E(r)$ for a long uniform cylinder of charge of radius R.
$\tilde{N}^{\mathrm{r}} \cdot \mathrm{r} \cdot \mathrm{A}=\frac{q}{\varepsilon_{0}}$.
Case $r>R$:
Let the charge per unit length on the cylindrical wire of radius R be λ. We consider a cylindrical Gaussian surface of length l and radius r. We have
$2 \pi r l E(r)=\frac{\lambda l}{\varepsilon_{0}}$,
or
$E(r)=\frac{\lambda}{2 \pi \varepsilon_{0} r}$, for $r>R$.
Case $r<R$:
$2 \pi r l E(r)=\left(\frac{\lambda}{\pi R^{2}}\right) \times \frac{\left(\pi r^{2} l\right)}{\varepsilon_{0}}$,
or

$$
E(r)=\frac{\lambda}{2 \pi \varepsilon_{0}} \times\left(\frac{r}{R^{2}}\right) \text { for } r<R
$$

(c)

We will use Ampere's law (version extended by
Maxwell) for finding $B(r)$ for a parallel-plate capacitor, with circular plates of radius R, in which E is changing at a constant rate.
$\sim_{\mathbb{N}}^{\mathrm{B}} \cdot \mathrm{r}^{\mathrm{r}}=\mu_{0}\left(\varepsilon_{0} \frac{d \Phi_{E}}{d t}\right)$.
Case $r>R$:
$2 \pi r B(r)=\mu_{0} \varepsilon_{0} \times\left(\pi R^{2}\right) \times \frac{d E}{d t}$,
or
$B(r)=\frac{\mu_{0} \varepsilon_{0}}{2} \times \frac{R^{2}}{r} \times \frac{d E}{d t}$ for $r>R$.

Case $r<R$:
$2 \pi r B(r)=\mu_{0} \varepsilon_{0} \times\left(\pi r^{2}\right) \times \frac{d E}{d t}$,
or
$B(r)=\frac{\mu_{0} \varepsilon_{0} r}{2} \times \frac{d E}{d t}$ for $r<R$.
(d) We will find $E(r)$ for a cylindrical region of radius R in which a uniform magnetic field is changing at constant rate using Faraday's law
$\tilde{\mathbb{N}}^{\mathrm{r}} \cdot d^{\mathrm{r}}=-\frac{d \Phi_{B}}{d t}$.
Case $r>R$:
$2 \pi r\left|\frac{\mathrm{r}}{E}(r)\right|=\left(\pi R^{2}\right)\left|\frac{d B}{d t}\right|$,
or
$|E(r)|=\frac{R^{2}}{2 r}\left|\frac{d B}{d t}\right|$ for $r>R$.
Case $r<R$:
$2 \pi r|\stackrel{\mathrm{r}}{E}(r)|=\left(\pi r^{2}\right)\left|\frac{d B}{d t}\right|$,
or
$|E(r)|=\frac{r}{2}\left|\frac{d B}{d t}\right|$ for $r<R$.

