549.

Problem 40.14 (RHK)

A capacitor consisting of two circular plates with radius $R=18.2 \mathrm{~cm}$ is connected to a source of emf $\mathrm{E}=\mathrm{E}_{m} \sin \omega t$, where $\mathrm{E}_{m}=225 \mathrm{~V}$ and $\omega=128 \mathrm{rad} \mathrm{s}^{-1}$. The maximum value of the displacement current is $i_{d}=7.63 \mu \mathrm{~A}$. Neglecting fringing of the electric field at the edges of the plates, we have to find the maximum value of the current i; the maximum value of $d \Phi_{E} / d t$, where Φ_{E} is the electric flux through the region between the plates; the separation between the plates d; and the maximum value of the magnitude of \hat{B} between the plates at a distance $r=11.0 \mathrm{~cm}$ from the centre.

Solution:

From the data of the problem we note that the emf applied across the plates of the capacitor can be described by the function
$\mathrm{E}=225 \sin 128 t \mathrm{~V}$.
Let the separation between the plates be $d \mathrm{~m}$. Variation of the electric field between the plates will be given by the function
$E=\frac{225}{d} \sin 128 t \mathrm{~V} \mathrm{~m}^{-1}$.
The displacement current i_{d} is given in terms of the change of electric flux per unit time by the relation $i_{d}=\varepsilon_{0} \frac{d \Phi_{E}}{d t}$.

The maximum value of $d \Phi_{E} / d t$ will therefore be given by
$\left(\frac{d \Phi_{E}}{d t}\right)_{\max }=\frac{\left(i_{d}\right)_{\max }}{\varepsilon_{0}}$.
It is given that
$\left(i_{d}\right)_{\text {max }}=7.63 \mu \mathrm{~A}$.
Therefore,

$$
\begin{aligned}
\left(\frac{d \Phi_{E}}{d t}\right)_{\max } & =\frac{7.63 \times 10^{-6}}{8.854 \times 10^{-12}} \mathrm{~V} \mathrm{~m} \mathrm{~s}^{-1} \\
& =0.8617 \times 10^{6} \mathrm{~V} \mathrm{~m} \mathrm{~s}^{-1} \\
& =861.7 \mathrm{kV} \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

The maximum value of the charging current will be equal to the maximum value of the displacement current.

Therefore, the maximum value of the charging current will be $7.63 \mu \mathrm{~A}$.

We will next calculate the separation between the plates.
We know that
$i_{d}=\varepsilon_{0} \frac{d \Phi_{E}}{d t}=\varepsilon_{0}\left(\pi R^{2}\right) \frac{d E}{d t}=\frac{\varepsilon_{0}\left(\pi R^{2}\right)}{d} \frac{d V}{d t}$
$=\frac{\varepsilon_{0}\left(\pi R^{2}\right)}{d} \times 225 \times 128 \cos 128 t$.
Therefore,
$\left(i_{d}\right)_{\max }=\frac{\varepsilon_{0}\left(\pi R^{2}\right)}{d} \times 225 \times 128 \mathrm{~A}$,
and
$d=\frac{\varepsilon_{0}\left(\pi R^{2}\right) \times 225 \times 128}{\left(i_{d}\right)_{\max }} \mathrm{m}$
$=\frac{8.854 \times 10^{-12} \times \pi \times\left(18.2 \times 10^{-2}\right)^{2} \times 225 \times 128}{7.63 \times 10^{-6}} \mathrm{~m}$
$=3.47 \mathrm{~mm}$.

We will find next the maximum value of $\stackrel{1}{B}$ between the plates at a distance $r=11.0 \mathrm{~cm}$ from the centre. The Ampere's law states that
$\tilde{N}^{1} \cdot{ }^{\mathrm{r}} \cdot \mu_{0} i_{d}$.
Considering an Amperian circular loop of radius $r=11.0 \mathrm{~cm}$, we have
$(B(r)) \times(2 \pi r)=\mu_{0} i_{d}$,
and

$$
\begin{aligned}
(B(r))_{\max } & =\frac{\mu_{0}\left(i_{d}\right)_{\max }}{2 \pi r} \times\left(\frac{\pi r^{2}}{\pi R^{2}}\right) \\
& =\frac{\left(4 \pi \times 10^{-7}\right) \times 7.63 \times 10^{-6}}{2 \pi \times 11.0 \times 10^{-2}} \times\left(\frac{11}{18.2}\right)^{2} \mathrm{~T} \\
& =5.06 \times 10^{-12} \mathrm{~T}
\end{aligned}
$$

