548.

Problem 40.13 (RHK)

Suppose that a circular-plate capacitor has a radius R of 32.1 mm and a plate separation of 4.80 mm . A sinusoidal potential difference with a maximum value of 162 V and a frequency of 60.0 Hz is applied between the plates. We have to find the maximum value of the induced magnetic field at $r=R$.

Solution:

From the data of the problem we note that the potential can be described by the function
$V=162 \sin (2 \pi \times 60 t) \mathrm{V}$,
and

$$
\begin{aligned}
\frac{d V}{d t} & =162 \times(2 \pi \times 60) \cos (120 \pi t) \mathrm{V} \mathrm{~s}^{-1} \\
& =61.07 \times 10^{3} \cos (120 \pi t) \mathrm{V} \mathrm{~s}^{-1} .
\end{aligned}
$$

In a parallel-plate capacitor with plate separation d, the electric field E and the potential difference V are related as
$E=\frac{V}{d}$,
we have

$$
\begin{aligned}
\frac{d E}{d t} & =\frac{61.07 \times 10^{3}}{4.80 \times 10^{-3}} \cos (120 \pi t) \mathrm{V} \mathrm{~s}^{-1} \\
& =12.72 \times 10^{6} \cos (120 \pi t) \mathrm{V} \mathrm{~s}^{-1}
\end{aligned}
$$

We note that
$\left(\frac{d E}{d t}\right)_{\max }=12.72 \times 10^{6} \mathrm{~V} \mathrm{~m}^{-1} \mathrm{~s}^{-1}$.
Ampere's law is
$\mathbb{N}^{\mathrm{r}} \cdot d \stackrel{\mathrm{r}}{s}=\mu_{0} \varepsilon_{0} \frac{d \Phi_{E}}{d t}$.
Applying it to an Amperian loop of radius $r=R$, we have
$2 \pi R B(R)=\mu_{0} \varepsilon_{0} \times\left(\pi R^{2}\right) \times \frac{d E}{d t}$,
or
$B(R)=\mu_{0} \varepsilon_{0} \times \frac{R}{2} \times \frac{d E}{d t}$.
The maximum value of the magnetic field between the plates at $R=32.1 \times 10^{-3} \mathrm{~m}$ will therefore be

$$
\begin{aligned}
(B(R))_{\max } & =\mu_{0} \varepsilon_{0} \times \frac{R}{2} \times\left(\frac{d E}{d t}\right)_{\max } \\
& =\frac{32.1 \times 10^{-3}}{2 \times\left(3 \times 10^{8}\right)^{2}} \times 12.72 \times 10^{6} \mathrm{~T} \\
& =2.27 \mathrm{pT}
\end{aligned}
$$

